Multitask SVM learning for Remote Sensing Data Classification
نویسندگان
چکیده
This paper proposes multitask learning to tackle several problems in remote sensing data classification. The method alleviates sample selection bias by imposing cross-information in the classifiers through matrix regularization. We consider the support vector machine as core learner and two regularization schemes for multitask learning. In the first one, we use the Euclidean distance of the predictors (in the Hilbert space) as the regularizer. In the second one, we assume that the parts of the predictors are shared among thems. Experiments are conducted in three challenging remote sensing problems: multitemporal classification, cloud screening and landmine detection.
منابع مشابه
Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملNovel Optimization Technique for Classification of Remote Sensing Data Using Svm
Remote sensing data is a collection of images and interpretation of information about an object, area, or event without any physical contact with it. Aircraft and satellites are common remote sensing platforms for earth and its natural sources. Remote sensing’s ability to identify and monitor land surfaces and environmental conditions expanded over years with remote sensed data being essential ...
متن کاملEvaluation of Factors Affecting Support Vector Machines for Hyperspectral Classification
Remote sensing data are attractive for deriving land cover information through image classification. A number of parametric and non-parametric classifiers such as the maximum likelihood classifier (MLC) and the artificial neural network (ANN) have been developed and tested successfully on multispectral data. However, the existing classifiers have shown marked limitations in the classification o...
متن کاملMapping the Potential of Groundwater Resources in Hard Formations Using Geographic Information System and Remote Sensing, Case Study: Northwest of Shahroud
In recent years, rapid population growth has led to increase per capita water use in various sectors including agriculture and industry and a growing gap between water demand and water supply has emerged. Therefore, identifying and tracking changes in groundwater resources as an alternative and reliable source of surface water resources are so important to region located in the Middle East with...
متن کامل